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ABSTRACT
We view randomization through the lens of statistical ma-
chine learning: as a powerful resource for offline optimiza-
tion. Cloud systems make randomized decisions all the time
(e.g., in load balancing), yet this randomness is rarely used for
optimization after-the-fact. By casting system decisions in the
framework of reinforcement learning, we show how to collect
data from existing systems, without modifying them, to evalu-
ate new policies, without deploying them. Our methodology,
called harvesting randomness, has the potential to accurately
estimate a policy’s performance without the risk or cost of
deploying it on live traffic. We quantify this optimization
power and apply it to a real machine health scenario in Azure
Compute. We also apply it to two prototyped scenarios, for
load balancing (Nginx) and caching (Redis), with much less
success, and use them to identify the systems and machine
learning challenges to achieving our goal.

Our long-term agenda is to harvest the randomness in dis-
tributed systems to develop non-invasive and efficient tech-
niques for optimizing them. Like CPU cycles and bandwidth,
we view randomness as a valuable resource being wasted by
the cloud, and we seek to remedy this.

1 INTRODUCTION
Cloud infrastructure systems make complex decisions ev-
eryday that choose among a set of actions based on some
contextual information. For example, a datacenter controller
chooses how long to wait for an unresponsive machine; an
in-memory cache chooses which items to evict when space
runs low; a load balancer chooses which backend server to
route a request to. (See Table 1.) For each decision, a policy is
used to choose an action given the context surrounding the de-
cision, with the goal of optimizing some reward metric. Since
the optimal policy is often unknown and may change, new
policies are constantly being devised, tested, and deployed.

To mitigate the cost of deploying a bad policy, staged roll-
outs are used to expose the policy to increasing fractions of
live traffic. If the infrastructure is available, an A/B test can
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Figure 1: The amount of data (N ) required to simultaneously
evaluate K policies, using typical constants (see §4). Contextual
bandits is exponentially more efficient than A/B testing, and can
evaluate policies offline.

be run to compare the new policy against the old one in a
statistically sound manner [8, 37]. Indeed, it is now common
practice to employ in-house (e.g., Bing’s EXP [14]) or com-
mercial experimentation platforms (e.g., Optimizely [30]) to
amortize the cost of deployment, such as for Internet website
optimization [15, 16]. Since the policy is exposed to live traf-
fic, a nontrivial amount of development, test, and management
effort is spent on each A/B test. But even if we completely
ignore these costs, the fact remains that only 100% of traffic is
available to share among all A/B tests. The more that are run
concurrently, the longer each will take to achieve statistical
significance, as shown in Fig. 1. Experiments also need to run
long enough to rule out inherent daily or weekly variations;
e.g., in Bing a typical experiment lasts two weeks [14]. Thus
even on the most advanced infrastructure, it is impractical to
run more than a few hundred experiments at a time.

What if, instead, we could evaluate a policy offline, with the
same guarantees as if we had run it in an online A/B test? Such
a counterfactual methodology would be extremely powerful,
because it would allow us to evaluate arbitrary policies with-
out the cost of making them production-ready, or the risk of
deploying them on live traffic. We could for example optimize
over a large class of policies, e.g., billions, to find the one with
best performance. As it turns out, this problem is well-studied
in reinforcement learning (RL) as the off-policy evaluation
problem [38], or how to use data collected from a deployed
policy to evaluate a different candidate policy. A necessary
condition for off-policy evaluation is that the deployed policy
makes randomized decisions: that is, given a context, the pol-
icy chooses each eligible action with some probability. In our
experience with online content recommendation [1], adding
randomization to an existing (non-randomized) product has
been the main source of uncertainty, complications, and delay.

This is where the beauty of systems comes in: many sys-
tems already make randomized decisions in the form expected
by RL, such as in load balancing, replica placement, cache
eviction, etc.. Billions of these decisions are made every day
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Machine health (Azure Compute) Caching (Redis) Load balancing (Nginx)
Decision wait time before reboot item to evict server to route request to
Context machine hardware/OS, failure history,... per-item access history, size,. . . request type, server load,. . .
Actions time to wait items currently in cache backend servers
Reward [+/−] [−]total downtime (scaled by # of VMs) [+]hitrate [−]99th percentile latency
Actions (CB) minutes in {1,2,...,9} subsample of items clusters/service endpoints
Reward (CB) (same) [+]time to next access of evicted item [−]request latency

Table 1: Example applications of RL in systems decisions. Rewards may be minimized [−] or maximized [+]. Actions and rewards
can be reformulated to fit the framework of contextual bandits (CB), allowing efficient off-policy evaluation.

by our cloud infrastructure, and tucked away in system logs.
We argue that this is a huge waste of a valuable resource:
randomness. Our vision is to develop a non-invasive method-
ology for harvesting this randomness to enable efficient off-
policy evaluation. By non-invasive, we mean that since sys-
tems already make randomized decisions, we should, in the-
ory, be able to scavenge the data we need from logs they
already collect. By efficient, we mean that our evaluation
techniques should scale to a large number of policies, run
quickly, and yield candidates that are deployable in practice.

Unfortunately, off-policy evaluation in RL is notoriously
difficult and inefficient. Our line of attack is to start with a
more tractable subset of RL called contextual bandits (CB)
and show that many systems decisions can be recast in this
framework (§2). CB supports efficient off-policy evaluation [7]:
we quantify this efficiency and show that CB can evaluate
exponentially more policies than A/B testing given the same
amount of data, and does so offline (Fig. 1, §4). We apply
our methodology successfully to machine health monitoring
in Azure Compute, using data scavenged from their system
logs. However, we find that the assumptions for CB are too
strong for many systems settings, such as load balancing
and caching, resulting in offline estimates that are inaccurate
and misleading (§5). We plan to address these challenges by
drawing on techniques from RL, or developing our own.

Our focus on off-policy evaluation is a departure from
prior work applying RL to systems, which focuses almost
exclusively on policy training. Being able to train a good
policy does not imply the ability to evaluate it offline; often,
the only way to accurately estimate its performance is to
deploy it, or use complex, application-specific modeling [5,
34, 41]. Moreover, most proposed solutions are invasive: they
interpose randomization and a continuous learning loop in
the system in order to produce a good policy [1, 10, 21, 26].

We make the following contributions:
(1) We identify a natural framework for CB and off-policy

evaluation in distributed systems.
(2) We develop a methodology for harvesting existing ran-

domness without intervening in a live system, and quan-
tify its optimization power.

(3) We successfully apply our methodology to machine health
monitoring in Azure Compute. We use our failures in
applying it to load balancing (Nginx) and caching (Redis)
to identify systems and machine learning challenges.

We end with a vision for how we might achieve our goals
given the challenges we face (§7).

2 BACKGROUND AND GOALS
This sections provides background on Reinforcement Learn-
ing (RL) and Contextual Bandits (CB), with examples of how
we can cast systems decisions in this framework. We then
give an overview of off-policy evaluation techniques.

Reinforcement learning. In reinforcement learning [38], an
agent learns by interacting with the world as follows:
(1) The state of the world or context x is observed.
(2) An action a ∈ A is taken (the set A may depend on x).
(3) The reward r for a is obtained.

A policy maps each context to an action (in step 2 above).
The goal is to maximize the cumulative reward over a se-
quence of such interactions. Many system decisions match
this setting; Table 1 shows real examples in machine health
monitoring, load balancing, and caching. A distinct property
of RL is that only partial feedback is observed for the action
that was taken; nothing is learned for actions that were not
taken. For instance, in the machine health example, we do
not know what would have happened if we waited longer to
reboot a machine. In contrast, supervised learning receives
full feedback: given a context (e.g., an image), the correct
label (e.g., dog) is always known.

To cope with partial feedback, RL algorithms balance ex-
ploration, or the use of randomization to experience new
actions, with exploitation of knowledge gained so far. An RL
policy makes randomized decisions: given a context, each
eligible action is chosen with some nonzero probability. An
interaction in RL thus generates a tuple ⟨x ,a, r ,p⟩, where p is
the probability with which the policy chose a; we call these tu-
ples exploration data. RL is most effective when each action
gets adequate coverage, which favors small action spaces.

Table 1 shows examples of systems decisions that fall in
the framework of RL. For example, in load balancing, the
decision is which server to route a request to, based on con-
text that includes server metrics (e.g., load, CPU usage), to
maximize the reward of (negative) 99th percentile latency.

Contextual bandits. Contextual bandits (CB) [2, 18] is a
subset of RL that assumes interactions are independent of
each other: one decision does not affect the context or reward
observed by another decision. More formally, CB assumes:
A1. Contexts are independent and identically distributed (i.i.d).
A2. The reward given a (context, action) pair is i.i.d.

This is an important simplification. By assuming that cur-
rent decisions do not impact future states, we know they do
not impact future rewards: the reward for an action is simply
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the one directly observed. This makes off-policy evaluation
easier, because each action can be considered independently
instead of as part of a sequence. Table 1 recasts our systems
decisions in the CB framework by using short-term proxies
for long-term rewards, e.g., each request’s latency instead of
99th percentile latency, and smaller action spaces.

Off-policy evaluation. Off-policy evaluation [38] uses explo-
ration data collected from a deployed policy to evaluate a
new candidate policy offline1. Such counterfactual reasoning
is extremely powerful because it allows us to ask “what if”
questions without the risk or cost of deploying a policy. In
supervised learning, off-policy evaluation is trivial because
we have full feedback on all action choices. In RL, we only
obtain partial feedback, so the data must be randomized in
order to avoid the biases of the deployed policy [4, 36]. Note
that “randomized” here does not mean rand() has to be
called for each decision: it is sufficient for the action choices
to be independent of the context [17]. For example, a hash-
based load balancing policy can be viewed as “random” if the
context does not include the inputs to the hash.

There are three approaches to off-policy evaluation in RL:
model-based approaches model the system workings and eval-
uate a policy against this model [23, 31]; function approxima-
tion methods directly approximate the long-term value of a
policy [39]; importance sampling approaches use probabilis-
tic weighting to correct the mismatch between the deployed
policy and candidate policy’s choices [33]. The first two ap-
proaches make assumptions about the real world and thus tend
to be biased. The third approach is unbiased but tends to have
high variance, especially if decisions impact future rewards
over a long horizon [22]. Hybrid approaches exist [13].

The independence assumptions of CB address some of
these issues and enable efficient off-policy evaluation [7, 19,
20]. We discuss an importance sampling method in §4.

3 HARVESTING RANDOMNESS
We describe a simple methodology for harvesting randomness
systems to enable off-policy evaluation. The idea is to collect
⟨x ,a, r ,p⟩ exploration datapoints from a production system
without intervening in it, as follows:
(1) Scavenge logs from an existing (live) system and extract

the ⟨x ,a, r ⟩ information for each request.
(2) Infer the probability p of each decision using code in-

spection or analysis of the scavenged ⟨x ,a, r ⟩ data.
(3) Evaluate/optimize a policy offline using ⟨x ,a, r ,p⟩ data.

Our experience with production systems has shown that
existing logging is adequate for recording the context sur-
rounding a decision (x), the decision itself (a), and the reward
(r ). As with all machine learning, some amount of feature
engineering is required to convert contextual information
scavenged in step 1 into usable features. In our experience, p
can often be inferred from code inspection, but a more robust

1“Offline” does not mean “batch”: off-policy evaluation may incrementally
update; it just does not intervene in a live (online) system.

approach is to do a regression on the ⟨x ,a, r ⟩ data to learn the
probability distribution over actions. The feasibility of step 3
depends on the application setting; if it is CB, for example,
then we can optimize a policy very data efficiently.

The above methodology may find a good policy without
intervention, but deploying it, of course, does require inter-
vention. Further, we may want to repeat steps 1-3 to contin-
uously optimize the system. Frameworks like the Decision
Service [1, 25] and NEXT [10] ease this deployment process,
which is not the focus of this paper. Our goal is to apply this
methodology to various systems to find good policies in the
first place. Then, we can focus our deployment efforts on
those systems for which step 3 predicts the highest gains.

We start with the applications in Table 1. For machine
health, we obtain demonstrable gains which are detailed in §4.
For caching and load balancing, off-policy evaluation brings
more challenges, which we discuss in §5.

Machine health. We used real logs collected by Azure Com-
pute to evaluate the machine health scenario. Azure Com-
pute already logs detailed hardware/configuration informa-
tion about each machine as well as context on past failures;
neither is fast-changing. Per-machine downtimes (the reward)
are also logged carefully as they directly impact customer
SLAs. At the time of our data collection, Azure was using a
safe default policy of waiting the maximal amount of time (10
min.) before rebooting, which actually gives us full feedback
on what would have happened if we waited {1,2,. . . ,9} min.,
similar to a supervised learning dataset! Thus, we can use this
data to both optimize a CB policy—by simulating randomized
data and applying off-policy evaluation—as well as obtain the
ground truth performance (using supervised learning). Our re-
sults in §4 have convinced the Azure Compute team to deploy
our CB policies in production [1].

Caching. We used the Redis key-value cache [35] to evaluate
the caching scenario. Redis already samples items uniformly
at random when making eviction decisions, and supports a
variety of eviction policies (random, LRU, etc.). This makes it
a good candidate for harvesting randomness. Redis maintains
per-item contextual information (e.g., last accessed time) but
does not log it by default, so we added custom logging for
this purpose. Determining the next time an evicted item is
accessed (the reward) would require a more invasive change,
since Redis does not maintain state for evicted items. Instead,
we reconstruct this information during step 1 by looking
ahead in the logs to when the item next appears. To obtain the
ground truth performance of a policy, we deploy and measure
it in our prototype. Caching violates some of the assumptions
of CB, making off-policy evaluation challenging (§5).

Load balancing. We used Nginx [28] to evaluate the load
balancing scenario. Nginx supports various load balancing
policies (random, least loaded, etc.), several of which may be
viewed as randomized (see §2), making it a good candidate
for harvesting randomness. It can also be customized with
modules, and many are provided by default. For example, we
were able to use existing logging modules to log the context
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Figure 2: Theoretical accuracy of policy
evaluation (Eq. 1) over a space of 106 poli-
cies (typical C, δ = 0.01).
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Figure 4: Convergence of CB training on
the machine health data, relative to a full
feedback model.

(e.g., active connections per server) and reward (request la-
tency) information; many other variables can be logged [29].
Similar to Redis, we obtain ground truth performance by
deploying the policy in our prototype. Load balancing also
violates some of the assumptions of CB (§5).

4 OFF-POLICY EVALUATION
We now describe basic off-policy evaluation in CB, and use it
to apply our methodology to the machine health scenario.

Unlike A/B testing, which randomizes over policies, CB
randomizes over actions. A single datapoint can then be used
to evaluate any policy that would have chosen the same action.
Specifically, given N exploration datapoints ⟨xt ,at , rt ,pt ⟩
collected from a deployed policy, we can evaluate any policy
π by considering the datapoints where π ’s choice matches
the logged action at . The simplest approach is to use inverse
propensity scoring (ips) [9] to estimate π ’s average reward:

ips(π ) = 1
N

∑N
t=1 1{π (xt )=at } rt/pt ,

where 1{} has value 1 when π ’s action matches the exploration
data and 0 otherwise. By importance weighting each datapoint
by the probability pt , we obtain an unbiased estimate of π ’s
performance, i.e., it converges to the true average reward
as N → ∞. Intuitively, this weighting avoids penalizing
(rewarding) π for bad (good) choices made by the deployed
policy which π did not make. Note that the estimate is defined
only if pt > 0, or all actions are explored.

In ips, each interaction on which π matches the explo-
ration data can be used to evaluate π ; in contrast, A/B testing
only uses data collected using π to evaluate π (so it must
actually run π online). The ability to reuse data offline makes
this approach exponentially more data-efficient than A/B test-
ing, in the following sense. Suppose we wish to evaluate K
different policies. Let ϵ be the minimum probability given to
each action in the exploration data, and assume all rewards lie
in [0, 1]. Then, with probability 1− δ the ips estimator yields
a confidence interval of size:√

C
ϵN log K

δ (1)

for all K policies simultaneously, where C is a small con-
stant [1]. The error scales logarithmically in the number of
policies. In contrast, with A/B testing the error could be as

large as C
√

K
N log K

δ . Since the number of actions is much

smaller than K , it follows that 1
ϵ ≪ K , making A/B testing

exponentially worse. Fig. 1 confirms this. The ability to eval-
uate any policy allows us to optimize over an entire class of
policies Π to find the best one2, with accuracy given by Eq. 1
(set K = |Π |). Typically Π is defined by a tunable template,
such as decision trees, neural nets, or linear vectors.

By relating the number of decisions N made by a system to
Eq. 1, we obtain a concrete measure of the wasted optimiza-
tion potential in that system. Suppose we wish to find the best
policy in a class of size |Π | = 106. Fig. 2 plots the theoretical
accuracy of evaluating all candidates2, for different values of
ϵ and representative constants C, δ = 0.05. For example, the
ϵ = 0.04 curve could represent an Azure edge proxy that load
balances Bing maps requests over 25 clusters (1/25 = 0.04).
Since rewards lie in [0, 1], an error much smaller than 1 is
desired, e.g., < 0.05. A few insights are immediate:
• A minimum N points are required to overcome the com-

peting parameters in Eq. 1. Beyond this point there are
diminishing returns. For example, increasing N from 1.7 to
3.4 million improves accuracy by less than 0.01.

• A higher ϵ (more exploration) reduces the data required sub-
stantially. For example, doubling ϵ from 0.02 to 0.04 halves
the data required in the ϵN term. This favors decisions over
smaller action spaces.
In order to measure the practical performance of off-policy

evaluation and optimization, we use real data collected from
the machine health scenario in Azure Compute (Table 1). As
mentioned earlier, this dataset has full feedback, allowing us
to simulate exploration in a partial feedback setting—by only
revealing the reward of a randomly chosen action, and hiding
all others—while also providing ground truth performance.

Fig. 3 shows the error (relative to ground truth) of the ips
estimator on a trained policy’s performance, as measured on
a testing dataset of growing size. The error bars show the
5th and 95th percentiles of the estimated value, computed
from one thousand partial information simulations; the top of
the error bar thus represents δ = 0.05. The estimator’s error
follows the theoretical trend of Fig. 2. With only 3500 points,
the error is below 20% with median error at 8%: this is already
enough to conclude with high confidence that the learned
policy outperforms the default used during data collection.

2This is done by an efficient search [7], not by evaluating every candidate.
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Off-policy evaluation also enables us to optimize, or learn,
a good policy, as shown in Fig. 4. Using a CB algorithm
for policy optimization, and simulating 10,000 exploration
datapoints from the dataset, we learn a policy that obtains
an average reward (on a testing set) within 15% of a policy
trained using supervised learning on the full feedback dataset.
The CB algorithm converges very quickly, getting within 20%
using only 2000 points. Although the full feedback model
performs better, it is an idealized baseline that cannot be
deployed long-term: as soon as we integrate it into the system,
new interactions would only provide partial feedback.

5 TECHNICAL CHALLENGES
The machine health scenario fit well in the CB framework, en-
abling very data efficient off-policy evaluation and optimiza-
tion. Other systems scenarios can raise significant challenges,
however, as we discuss next.

Violations of independence. Recall from §2 that CB as-
sumes that contexts (A1) and rewards (A2) are i.i.d.. A2
is violated, for example, when the workload or environment
changes. Like prior work [1], we can address this by using
incremental learning algorithms that continuously update the
policy (i.e., repeating steps 1-3 of our methodology).

A1 is more problematic. It requires that the distribution
of contexts is not impacted by prior decisions, but this is
routinely violated in many systems. For example in our load
balancing scenario, the load of each endpoint is a useful met-
ric to include in the context. However, prior routing decisions
clearly influence these loads and thus change the context
distribution. This completely breaks off-policy evaluation,
as the following example shows. Consider a load balancer
that routes requests randomly to two servers. Each server’s
latency is a linear function of the number of open connec-
tions, and server 2 is slower than server 1 by an additive
constant, as shown on Fig. 5. We used Nginx to collect ex-
ploration data from such a system and used the ips esti-
mator to evaluate different policies. (Recall that ips does
not account for a policy’s long-term impact on contexts.)

Figure 5: Setup.

Table 2 shows the off-policy esti-
mates of the policies, compared to
their true performance in an online
deployment. Since in the collected
data server 1 is always faster, eval-
uating a policy that always sends to
server 1 yields good results! But if
this policy is deployed, it will over-
load server 1 and perform abysmally.

To address this challenge, we plan to use off-policy es-
timators that account for long-term effects [40]. Intuitively,
these estimators reweigh the data based on the probability
of matching sequences of actions rather than single actions.
Since the probability of matching long sequences is very low,
these estimators suffer from high variance. We envision lever-
aging doubly robust techniques [13], which use modeling to

Policy Off-policy evaluation Online evaluation
Random 0.44s 0.44s
Least loaded 0.36s 0.38s
Send to 1 0.31s 0.70s
CB policy 0.32s 0.35s

Table 2: Mean request latency of different load balancing poli-
cies (Nginx). Off-policy evaluation breaks for a policy that only
sends to one server. CB optimization yields a policy that outper-
forms least loaded.

Policy Random LRU LFU CB policy Freq/size
Hit rate 48.5% 48.2% 44.0% 48.7% 58.9%

Table 3: Hitrates of different cache eviction policies on a
big/small item workload (Redis). The only policy that beats ran-
dom eviction explicitly considers item size.

predict rewards, to reduce this variance. The difficulty will be
in devising models that meet our goals of being simple and
flexible enough to work in a variety of systems settings, and
being efficiently learnable from logged data.

Finally, Table 2 shows that despite the ineffectiveness of
policy evaluation in the load balancing scenario, CB is still
able to optimize (learn) a good policy from the exploration
data and outperform least loaded. This is because the CB
algorithm learns a good estimator of each server’s latency
based on context, and greedily picking the lowest latency
yields a good policy. The benefit of CB would increase with
more request-specific context (e.g., URI, arguments, cookies),
as the algorithm would learn how different types of requests
are processed by different servers, something least loaded
cannot do. Overall, these results show that policy optimization
can be much easier than policy evaluation in some settings.

Long-term rewards. Not all settings are amenable to training
good policies, however. Another property of many systems
decisions is that they have a long-term impact on future re-
wards. This is true in the caching scenario, for example. To
demonstrate this, we collected exploration data from a Redis
server configured with a random eviction policy, using a work-
load consisting of a few frequently-queried large items and
many less-frequently-queried small items. The large items are
queried twice as frequently but are four times as big: it is thus
more efficient to cache the small items.

Table 3 shows the performance of different eviction poli-
cies, including one learned by a CB algorithm. Both the CB
policy and LRU perform as poorly as random eviction, be-
cause they greedily keep the large items (expecting them to
be queried again soon) without considering the opportunity
cost of using more space. Indeed, a policy manually designed
to take size into account (by optimizing the ratio of access
frequency to size) has a hitrate 10 percentage points higher.
This shows that failing to capture long-term effects can lead
to bad optimization.
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One avenue to address this challenge is to build long-term
effects into the optimization process. However, common tech-
niques for doing this involve extensive modeling, system-
specific simulators, or slow decision times. We plan to start
with CB algorithms and minimally incorporate long-term
techniques, to leverage them without giving up the efficiency
of CB’s off-policy evaluation.

Exploration coverage. Accounting for a policy’s long-term
impact seems necessary in many systems, but it also intro-
duces an exploration challenge. Existing randomized heuris-
tics often make independent decisions for each action, which
may not provide coverage for longer-term effects. For in-
stance, a uniform random load balancing policy will almost
never choose the same server twenty times in a row. We will
thus lack data to evaluate the long-term impact of a policy
that always sends to one server. We plan to investigate two
systems approaches to tackle this challenge.

First, we can adapt current heuristics slightly so that they
yield richer exploration data. While this violates our goal of
being non-invasive, it is certainly less invasive than deploying
a new learning system. For example, instead of randomizing
each request, a load balancer could randomize the share of
traffic sent to each server during the next N requests. In Ng-
inx, this is easily implemented by randomizing the weights
assigned to each server.

Second, reliability testing in distributed systems can trigger
uneven traffic and extreme conditions that lead to broader
exploration. As an example, we could leverage Netflix’s open-
source Chaos Monkey [27], a system that triggers failures
(e.g., VM crash, high network latency) in production data
centers. Such randomized failures, and the systems’ responses,
would generate valuable exploration data.

Hierarchy and large action spaces. Large action spaces are
another impediment to good exploration. Choosing between
many actions reduces the coverage of each action, increasing
the amount of data needed for off-policy evaluation. Fortu-
nately, hierarchical designs can help. For instance, Azure’s
edge proxy (Front Door) load balances over tens of service
endpoints, while standard load balancers distribute requests
within the local clusters (Fig. 6). This reduces the action space
at each level, allowing us to apply our methodology to both
levels if desired.

Data collection and distributed state. Reducing the action
space also reduces the amount of context that needs to be
logged. In caching for instance, it is impractical to log the
context of every cached item during an eviction decision. We

can reduce the action space and data collection by considering
only a random subsample of the items. This is already how
eviction works in Redis, for example.

Another data collection challenge is that state may be dis-
tributed or unavailable at the time of decision. For instance,
Nginx and Azure Front Door may know the load of each end-
point because all requests are routed back through them, but
they do not know the CPU or RAM usage of the endpoints.
Collecting this data will inevitably result in stale or incom-
plete contexts. We suspect that CB algorithms can naturally
tolerate staleness. If not, we might assist the learner by ex-
plicitly modeling staleness, or by using advanced networking
solutions like RDMA to read remote contexts faster.

It seems unlikely that we can avoid modifying the logging
of current systems altogether (step 1 of our methodology).
However, the changes we have made in our example scenarios
have been simple and minimal, and well worth the future
optimization potential in our view. For instance, in Redis
we required information about evicted items that was not
retained, but most of it was discernable from the logs. In
Nginx, existing logging modules already provided what we
needed, and simply needed to be configured.

6 RELATED WORK
Our focus on off-policy evaluation is a significant departure
from prior work applying RL to systems. Many such applica-
tions require complex, application-specific modeling or simu-
lations [5, 34, 41], which are subject to bias if the model of the
world is wrong. Other applications do not use a model, but rely
on continuous interactions with the environment (i.e., invasive
deployments) to learn a good policy [3, 6, 10–12, 24, 26, 32].
The only prior work supporting off-policy evaluation is re-
stricted to CB techniques, and we use it as a building block for
our settings [1]. Moreover, many of these techniques leverage
deep neural networks or search based policies, which are too
slow for the kinds of systems decisions we are optimizing,
such as caching and load balancing [3, 24, 26].

7 CLOSING: WASTED RANDOMNESS
We have laid out a methodology for harvesting randomness
in systems infrastructure that allows us to evaluate policies
without ever deploying them. In many cases, this can be done
without intervention in the live system (e.g., Azure Compute),
or at most minor additional logging (e.g., Redis, Nginx). Our
experience with these applications suggests that opportunities
for optimization may come in more forms than we anticipated.
For example, the machine health scenario had no random-
ization, yet provided full information. The load balancing
scenario provided perfect randomization, yet our off-policy
evaluation techniques did not work.

Existing randomness in systems is being wasted at an alarm-
ing rate. We believe that harvesting it for systems optimization
is an important endeavor that systems and machine learning
researchers should jointly embark on.
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